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Abstract

Systems of street networks form a backbone for many aspects of human life and, once laid
down, urban streets represent a nearly immutable influence on future urban form and concomi-
tant travel, energy, and social outcomes. Moreover, as humanity is currently passing through its
peak urbanization rate, decisions about how to design such networks at the local scale are being
made faster than ever before. In this work, we quantify local street connectivity and provide
a global, high-resolution time series of our Street Network Disconnectedness Index (SNDi) as
an open data set. We derive a stylized version of the actual geographic road network from the
2023 vintage of OpenStreetMap by simplifying complex intersections, divided roads, and offset
intersections. Using this functional representation of the network corrects systematic biases in
derived properties of the network. We couple this simplified network with a newly-available
time series of urbanization in order to compute SNDi and provide a dynamic analysis to the year
2019 and a cross-sectional analysis for 2023. We release our data as the raw network of edges
and nodes and as aggregates to a 1 km grid, to countries, and to five subnational administra-
tive levels. We also provide interactive visualizations at sprawlmap.org. Overall, our findings
present a picture of rapidly worsening street network connectivity in many regions of the world.
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1 Introduction

Street networks are a key dimension of urban form. The connectivity of streets shapes the travel
choices and carbon footprints of a city’s residents (Ewing and Cervero, 2010; Barrington-Leigh
and Millard-Ball, 2017), and possibly long-term densification opportunities as well. Less connected
streets – which we call street-network sprawl – reduce accessibility by bus, walking and cycling,
partly because their greater circuity increases travel distances and makes public transportation
service less feasible.

The importance of today’s decisions on street-network sprawl is amplified by lock-in and by the
rate of change. Once laid down, street patterns rarely change, even after fires, wartime bombing,
and earthquakes (Vazquez et al., 2023). And given that growth in the urban population is expected
to peak by 2025 (United Nations, 2019), it likely that the 2020s will also represent the period of
peak growth in urban street construction.

Our previous work (Barrington-Leigh and Millard-Ball, 2019, 2020) reported aggregate estimates
of street-network sprawl for all countries and 200 selected cities. In this paper, we offer three major
advances. First, we release for the first time the full data at the 1km level as a global grid, as
well as the underlying street and path network as a graph of nodes and edges. In our earlier work
and in this new dataset, we use raw data from OpenStreetMap (OSM) to compute 13 measures
of connectivity, which we aggregate into a single index — the Street Network Disconnectedness
Index (SNDi). Second, we offer a new algorithm for transforming the geometric representation of
the street network into a simplified graph that is more appropriate for network analysis. Third, we
update our cross-sectional data to use the October 2023 vintage (i.e., version) of OSM, and update
the time series to examine shifts in street-network sprawl from 2015 to 2019, taking advantage of
new longitudinal datasets on urban growth.

Our dataset complements the availability of global-scale population density (ORNL, 2011; Flor-
czyk et al., 2019) and street connectivity datasets for specific countries (Boeing, 2020). Many
analyses of urban form focus exclusively on population density, given the ready availability of data
derived from national censuses and remotely sensed nighttime lights. Our street-network sprawl
data provide a complement that reflects a separate and more enduring dimension of urban form.
Our work is closest to that of Boeing (2021) who provides street connectivity indicators for each
urban center in the world. We go beyond that to (i) provide a time series from 1975 to 2020; (ii)
provide measures for a 1km grid that is not confined to urban center boundaries; (iii) include bicycle
and pedestrian paths that are omitted from the Boeing dataset, but are crucial in the connectivity
of streets in places such as Denmark (Barrington-Leigh and Millard-Ball, 2020); and (iv) simplify
the street network to provide more meaningful measures of connectivity.

Our contributions in this paper are (i) producing a dataset for other researchers to use and
build on, (ii) providing descriptive analysis of geographic patterns in street-network sprawl and
trends over time, and (iii) identifying and addressing how to simplify a geometric road network for
purposes of network and connectivity analysis. As we discuss below, simplification is important
to avoid double counting complex intersections that are represented by multiple nodes, and roads
with a median that are represented by multiple edges. As this is a “data” paper, we do not identify
or test specific hypotheses or theoretical mechanisms, but our data can facilitate future research in
the vein of regional and global-scale studies on the impact of street connectivity on urban history
(Vazquez et al., 2023; Salazar Miranda, 2021), transportation choices (Marshall and Garrick, 2010;
Hajrasouliha and Yin, 2015; Brenner et al., 2024), environmental outcomes (Rezaei and Millard-
Ball, 2023), social relations, and more.
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2 Measuring street-network sprawl

Street-network sprawl — our term for low street connectivity — is often quantified as the proportion
of deadends or four-way intersections, average nodal degree, and/or intersection density (Marshall
and Garrick, 2010; Ewing and Cervero, 2010). In North America, the empirical setting for most
street connectivity research to date, these measures can distinguish between two of the most common
street network configurations – a grid (where most nodes are degree-4) and subdivisions with culs-
de-sac (where most nodes are degree-3 or degree-1). But nodal degree does not do justice to the
connectivity of irregular networks typical of many Japanese, Middle Eastern, and European cities,
where most nodes are degree-3 but pedestrian connectivity is clearly high.

Therefore, we quantify street-network sprawl using a wider range of attributes that can dis-
tinguish between more- and less-connected streets in a range of different urban design traditions.
In addition to nodal degree and the fraction of deadends, we use measures of circuity (the ratio
between network distance and Euclidean distance) and sinuosity (the curviness of individual street
edges). We also include several measures of the network function of each edge based on their graph
theoretic properties. For example, we calculate the number and fraction of network “bridges” —
streets that are the only connection between two different parts of the network, such as the single
entrance to a gated community. Our 13 measures are described in Table A2 in the Appendix.

We collapse these 13 measures to a single index, the Street Network Disconnectedness index
(SNDi) by using their first principal component (Table A3). Higher SNDi indicates more street-
network sprawl, i.e. less connected streets. In our previous work, we validated SNDi using Google
Street View imagery and national census data, and showed that SNDi corresponds to neighborhood
walkability as well as individual decisions on car ownership and commute mode. The updated
Principal Component Analysis (PCA) coefficients reported in Table A3 are similar to our previous
estimates, indicating that our newly calculated SNDi has a similar interpretation.

Most of our analysis was carried out in a PostgreSQL/PostGIS database, with scripting and
some network analysis functions undertaken in Python. We made use of moderate parallelization
(56 processors) for many tasks, and of the ∼0.7 TB RAM available on our dedicated computation
server. The entire planet took us about one month to process. The two most lengthy stages were
the road network simplification (∼12 days) and the calculations of circuity and graph theoretic
properties for each node (∼14 days).

In general, our computational approach is similar to that described in our 2019 analysis. In the
following sections, we briefly describe that approach, and focus in more detail on the changes we
have made. In the Appendix, we provide a more extensive step-by-step discussion of our algorithm,
and show the impact of the change to our algorithm and of updating the underlying OSM data
from the 2019 to the 2023 vintage.

3 Simplifying the network

Maps that are geometrically accurate are not necessarily well-suited for network analysis and an-
alyzing the connectivity of streets. Three examples are illustrative. In one case, a roundabout is
functionally a single intersection, but geometrically, the roundabout may be depicted as a circular
street, with each entrance (and possibly exit) accounting for a separate intersection. In another
case, a slightly staggered intersection is functionally a degree-4 node, but geometrically might be
represented as two degree-3 nodes, connected by a very short street. In a third case, a two-way
street might be represented as two different one-way streets due to the presence of a median. In all
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Figure 1: Treatment of complex intersections in 2019 (A) and 2022 (B) analysis. In Panel A, the
intersection is collapsed to a single node. In Panel B, the original geometry is retained, but some
edges are ignored in the aggregation. The extent of each complex intersection in Panel B is shown
as the shaded area.

three cases, using the geometric rather than the functional representation will tend to bias upwards
the number of nodes and also affect other properties of the network. Such biases will also inflate
other measures often used in the urban planning literature, such as intersection density.

For this reason, we develop an algorithm to simplify the geometric representation of the street
network provided by OSM. Our overall philosophy is to mitigate the dependence of our results on
how the street network is represented in OSM — for example, the mapper may depict a staggered
intersection with two nodes rather than a single node, map sidewalks as separate edges from the
roadway, or represent a road with a median as two parallel edges, one for each direction. Note that
this is conceptually separate from our process of annealing — i.e., removing nodes that are degree-2
(not intersections or deadends). While this annealing is called “simplification” by Boeing (2017),
our simplification process goes beyond this.

We also simplified the network in our 2019 analysis, but here we improve on that approach in
two ways related to (i) complex intersections and (ii) divided roads. We summarize our algorithm
here and provide more detail in the appendix.

3.1 Complex intersections

Complex intersections include roundabouts, staggered intersections, and motorway interchanges
that are functionally a single intersection, but are represented as multiple nodes in OpenStreetMap.
In our 2019 analysis, we identified clusters where all nodes were within 20m of another node, and
collapsed such clusters into single nodes at their centroids (Figure 1, panel A). This approach had
computational advantages, but led to a slight overestimate of circuity (all routes had to pass through
the cluster centroid), and made the graphical representation non-intuitive.

In the present analysis, we adopt an approach that preserves all original nodes and edges (sum-
marized in Table A2. ) We identify clusters of nodes where each node is within 20m (via the
street network) of another node, and select a random node to represent that cluster (Figure 1,
panel B). All other nodes are ignored at the later stage when we calculate aggregate connectivity

5



Figure 2: Rationale for excluding ignored nodes and edges from the aggregations (A, B, D), although
the ignored edges are considered when calculating circuity (C).

measures, in order to avoid double weighting these intersections (Figure 2A) and to avoid inflating
the nodal degree of these intersections (Figure 2B). Moreover, edges <20m in length are classified
as “intra-cluster,” and are also ignored in the aggregation. However, these intra-cluster nodes and
edges are retained for purposes of calculating circuity — they can form part of the shortest path
between two non-intra-cluster nodes (Figure 2C). In Figure 2, for example, the blue nodes would
not even be connected without considering the intra-cluster and other ignored (red) edges.

3.2 Divided roads

In some cases, roads with a center median are depicted as two parallel edges in OSM, even if they
are functionally the same road. This would effectively mean that these roads are double-weighted
in our calculations of SNDi. To mitigate this issue, we identify sets of two or more parallel edges,
defined as those that start and end in the same two clusters of nodes. Within each set, we first drop
footpaths, bicycle paths, and similar edges where there is a parallel ”car” edge; typically, these are
footways or bicycle paths alongside a road. Of the remaining edges in each set, we identify those
that have the same name (e.g. “Main Street”) and randomly select one edge to represent the set.
The remaining edge or, rarely, edges are retained for purposes of calculating circuity, but ignored
for the aggregation (Figure 2D).

Overall, 8.0 million sets of parallel edges exist in our final dataset. Of the 17.7 million
constituent edges, we tag 1.2 million as ”ignore” because a parallel edge with the same OSM name
exists.

As with many simplification algorithms, merging divided roads is a tradeoff between false pos-
itives (i.e., merging roads that are functionally separate) and false negatives (i.e., retaining two
sides of a divided highway that are functionally a single road). It is also unclear where to set the
dividing line — at what point do two parallel edges become functionally separate? Because we rely
on heuristics and do not formally test the tradeoff, we err on the side of avoiding false positives by
dropping only edges that meet both criteria (same OSM name and same start and end clusters of
nodes). Thus, our approach improves on using the raw network, but does not address all cases of
divided roads.
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False negatives might arise where the name of an OSM way is missing or misspelled, or where the
name differs between the two sides of a divided road. Spot inspections of a random sample of parallel
edges suggests that where the OSM names differ, the edges are normally functionally separate (e.g.,
there are buildings between them) and using the OSM name is thus a useful discriminator. However,
where the OSM name is missing (as is the case for 13.4 million parallel edges), more false negatives
are likely to arise. The detailed algorithm (provided in the appendix) and our full code repository
allow others to build on our work.

3.3 Other simplifications

As in our 2019 analysis, we drop duplicate geometries, and anneal degree-2 nodes, which by defini-
tion do not represent intersections. Their existence is an artefact of the import process or simply
reflects the way data have been entered into OSM.

3.4 Simplification procedure

Because simplification can create further degree-2 nodes, we repeat certain steps of the process
multiple times, as follows:

1. Create clusters: identify clusters of nodes where each node is within 20m of at least one other
node in that cluster.

2. Within each cluster, randomly select one node to represent the cluster. Other intra-cluster
nodes are retained but ignored in the subsequent aggregation, as are edges that link nodes in
the same cluster.

3. Anneal degree-2 clusters: if a cluster only has two edges that link it to nodes outside the
cluster, then compute the shortest path across that cluster. Retain that shortest path and
remove other intra-cluster edges.

4. Anneal nodes: delete degree-2 nodes, i.e. any node that is neither a deadend nor an intersec-
tion.

5. Until no more changes are needed, repeat steps (1) through (4), as step (4) may have made
some clusters smaller.

6. Drop footways and bicycle paths where they start and end in the same cluster as at least one
other edge.

7. Anneal nodes, as step (6) may have created degree-2 nodes.

8. Identify and classify divided roads: where two or more edges start and end in the same cluster
and have the same road name in OSM, randomly choose one of them to represent the road.
Other edges are retained but ignored in the subsequent aggregation.

9. Anneal degree-2 clusters and anneal nodes as in steps (3) and (4) above, and repeat until no
degree-2 nodes remain.
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4 Computing connectivity measures

Detailed descriptions of the computation method for each connectivity measure from a network
of nodes and edges are given in Barrington-Leigh and Millard-Ball (2019, Appendix A) and are
unchanged. A summary table of the breadth and conceptual content of metrics is reproduced in
Table A1.

4.1 Circuity correction

One change from our 2019 analysis relates to our circuity measures, which we compute for every
node i for multiple distance bands (d1, d2). For each band (d1, d2), e.g., 500m–1000m, we calculate
the sum of the Euclidean distances from node i to every other node that lies between Euclidean
distances d1 and d2, and do the same for the network distances to every node in the same (Euclidean)
distance band. We then calculate the log ratio of Euclidean to network distance. In our 2019
analysis, we simplified by excluding any node pairs greater than 3000m apart via the network. This
underestimated circuity, particularly for the higher distance bands. In the revised analysis, we
relax this constraint to 5d2 (e.g., 15km for the 2500m-3000m band). Where the network distance
is greater than 15km or is not defined (as in an island with no road connection), we top-code it to
15km for computational reasons.

4.2 Urban region and time series identification

Our primary results are restricted to urbanized areas. In our 2019 analysis, we used a custom
classification of urban areas based on country-specific density thresholds. Since then, the release of
the Global Human Settlements Layer (Pesaresi, 2023) provides a consistent typology of urban set-
tlements across countries, using the EUROSTAT “degree of urbanization” classification. Therefore,
we now use the GHSL data (2023 release of GHS-SMOD) to identify urban areas. Specifically, we
identify an edge or node as “urban” if it intersects a pixel classified by GHSL as “urban centre,”
“dense urban cluster,” “semi-dense urban cluster,” or “suburban or peri-urban” (classes 30, 23, 22,
and 21). The remaining classifications are various types of rural settlement.

We also use the GHSL data (specifically the 2023 GHS-BUILT-S raster) to develop a time series
of street-network sprawl. Each GHS-BUILT pixel is classified as follows: land not built-up; built-up
from 2005 to 2019 epochs; built-up from 1990 to 2004 epochs; built-up from 1975 to 1989 epochs;
built-up before 1975 epoch. We calculate the built-up epoch based on when at least half of the
ultimately-developed pixels in the 100m grid cell(s) that intersect each edge and node had been
developed. For example, suppose that the intersecting grid cells have 20 pixels marked as developed
by 1975, 60 by 1990, 70 by 2005, and 100 by 2020, with a further 50 pixels not built up in any
of these epochs. Then, we would assigned an epoch of 1975-89, as more than half of the built-up
pixels (60/100) had been developed by 1990.

4.3 Aggregation

We aggregate to a 1km grid and to the administrative areas (countries and up to 5 subnational
levels) demarcated in the Global Administrative Areas (GADM) dataset.

As in our 2019 analysis, we allow footpaths, bicycle paths, service roads, and similar edges to
contribute to the connectivity of the network, but do not consider these nodes and edges in our
aggregation, or as origins or destinations in the circuity analysis. This exclusion helps to avoid

8



several potential biases. For example, the “service” tag is often used to identify private driveways,
a practice that would inflate the fraction of dead ends. “Service” tags also represent other access
roads that do not form part of the public street network, and aisles in parking lots, the internal
connectivity of which has little relevance to urban form or travel behavior. The same is true for
networks of walking paths in public parks, which can be represented in minimal or excruciating
detail depending on the OSM contributor.

Even though these footpaths, bicycle paths, and service roads are excluded from the aggregation,
they are included when computing graph properties and our measures of dendricity, nodal degree
and circuity. Inclusion of these edges markedly increases connectivity in places such as Denmark,
where residential streets are often designed as deadends for cars but allow pedestrians and bicyclists
to continue through. Intuitively, a pedestrian or cycle path improves our measure of connectivity
indirectly, through its effect on nearby streets.

5 Results

The upper panel of Figure 3 shows SNDi at the country level for the entire stock of streets repre-
sented in OpenStreetMap. Countries with more connected streets (lower SNDi) are in blue, and
those with higher SNDi in red. Connectivity is highest in much of South America (especially Ar-
gentina), continental Europe, North Africa, and parts of East Asia, especially Japan, South Korea,
and Taiwan. At the other extreme, while the United States is the poster child for car-dependent
suburban development, street connectivity is even lower (higher SNDi) in south and southeast Asia,
particularly Thailand and Bangladesh.

The global differences in street connectivity are even more marked when considering streets
constructed in the most recent of our four epochs, 2005-19 (Figure 3, lower panel). Southeast Asia,
including Indonesia and the Philippines, is particularly notable for its high levels of SNDi in recent
construction.

Within-country variation is also noticeable. In addition to the downloadable data, our compan-
ion website at https://sprawlmap.org provides interactive maps of our results aggregated to five
levels of sub-national administrative geographies and to a 1km grid.

Figure 4 shows trends in SNDi over the full range of our time series. In panels A and B, we have
aggregated new development in urban areas across countries according to World Bank geographic
and economic groupings. Many features are qualitatively consistent with our earlier work. However,
updating the data to more recent years shows a generally steeper increase in street network sprawl
in most regions and overall across Earth. Panel C shows trends aggregated to the country level
for large countries, while panel D presents trends for large cities, but using a different time series
which specifies urban development boundaries up to 2013 (Angel et al., 2012, 2016). While our
previous work suggested that SNDi had plateaued in a number of locations and regions shown in
Figure 4, the updated analysis provides instead a picture of increasingly disconnected development
in the largest cities and generally in developing and middle income countries.

Even though the main feature of our new analysis is that the data are available at a highly
disaggregated level, allowing for a variety of more detailed analysis, we provide one more example
of high-level aggregation to extend the city-level picture. Figure 5 shows the average SNDi over
the stock of streets in 2013 for a number of large cities, as well as that of new development in the
2000–2013 period. Patterns generally match the country-level picture of Figure 3.
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Figure 3: Upper panel: Street-network sprawl (SNDi) for the stock of streets, 2023. The inset shows
the distribution (kernel density) of SNDi for 1km2 grid cells in the five most populous countries.
Lower panel: SNDi for streets developed in 2005–19. The inset shows how the distributions at the
grid cell level (measured via kernel density) have shifted out over our four epochs, marking the shift
towards less connected streets over time.
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Figure 4: Trends in SNDi over time at the regional level (A), by the World Bank’s country devel-
opment classification (B), for a selection of large countries (C), and for a selection of large cities
(D). HIPC is the World Bank’s Heavily-Indebted Poor Country category. While trends show SNDi
of new development during each time period, the solid circles show SNDi of the stock of all streets.
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Figure 5: Distribution of SNDi for major cities in 2013 (top) and in recent development (bottom).
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6 Data and code availability

Our analyses are available under a CC BY 4.0 License in three general geospatial formats:

1. as gridded data, specifying SNDi and its component metrics at 1km resolution,

2. as vector polygon data, aggregated to geopolitical boundaries at several spatial scales, using
the Global Administrative Areas v4.1 dataset (GADM, 2022), from nodes and edges charac-
terized as urban,

3. and as vector network data, specifying each node and edge and its characteristics.

Our provision of the underlying vector network data facilitates the creation of more detailed time
series for specific locales. For instance, while our work relies on the GHSL in order to provide
global coverage, data available for specific countries or metropolitan areas may offer higher temporal
resolution (e.g. Turner et al., 2023; Barrington-Leigh and Millard-Ball, 2015).

The data are hosted by OSF at https://osf.io/c9hjy.
We also provide our code as an open GitLab repository at gitlab.com/cpbl/global-street-network-

sprawl-sndi. Given the hardware requirements and computation time, we suggest that our pre-
prepared data products will be more valuable for most users. However, the code enables researchers
to build on our algorithms and explore other extensions.

7 Conclusion

Our release of these analyses is intended to facilitate further exploration of patterns and trends
in important characteristics of street networks worldwide. By releasing both spatially aggregated
data and the underlying network layer, and both the SNDi and its component metrics, we hope
to offer convenience and ease for moving beyond a simplistic and Americas-centric approach to
quantifying street network connectivity. SNDi can serve as a point of comparison which has been
validated across different historical development forms, and which detects stark and regionally-
differentiated trends over recent decades. By providing a 45-year time series, we hope to facilitate
studies of street connectivity that move beyond the descriptive to examine the causal role of streets
in shaping economic, social, and environmental outcomes.

References

Angel S, Blei AM, Civco DL and Parent J (2012) Atlas of urban expansion. Cambridge, MA:
Lincoln Institute of Land Policy. URL http://atlasofurbanexpansion.org.

Angel S, Blei AM, Parent J, Lamson-Hall P, Sánchez NG, with Daniel L Civco, Lei RQ and
Thom K (2016) Atlas of Urban Expansion — 2016 Edition: Volume 1: Areas and Densi-
ties. NYU Urban Expansion Program at New York University, UN-Habitat, and the Lin-
coln Institute of Land Policy. URL http://www.lincolninst.edu/publications/other/

atlas-urban-expansion-2016-edition.

Barrington-Leigh C and Millard-Ball A (2015) A century of sprawl in the United States. Proceedings
of the National Academy of Sciences 112(27): 8244–8249.

13

https://creativecommons.org/licenses/by/4.0/
https://osf.io/c9hjy
https://gitlab.com/cpbl/global-street-network-sprawl-sndi
https://gitlab.com/cpbl/global-street-network-sprawl-sndi
http://atlasofurbanexpansion.org
http://www.lincolninst.edu/publications/other/atlas-urban-expansion-2016-edition
http://www.lincolninst.edu/publications/other/atlas-urban-expansion-2016-edition


Barrington-Leigh C and Millard-Ball A (2017) More connected urban roads reduce US GHG emis-
sions. Environmental Research Letters 12(4): 044008. DOI:10.1088/1748-9326/aa59ba. URL
https://doi.org/10.1088/1748-9326/aa59ba.

Barrington-Leigh C and Millard-Ball A (2019) A global assessment of street network sprawl. PLoS
ONE 14(11): e0223078. DOI:10.1371/journal.pone.0223078. URL https://doi.org/10.1371/

journal.pone.0223078.

Barrington-Leigh C and Millard-Ball A (2020) Global trends toward urban street-network sprawl.
Proceedings of the National Academy of Sciences DOI:10.1073/pnas.1905232116. URL https:

//www.pnas.org/content/early/2020/01/13/1905232116.

Boeing G (2017) Osmnx: New methods for acquiring, constructing, analyzing, and visualizing com-
plex street networks. Computers, Environment and Urban Systems 65(Supplement C): 126 – 139.
DOI:https://doi.org/10.1016/j.compenvurbsys.2017.05.004. URL http://www.sciencedirect.

com/science/article/pii/S0198971516303970.

Boeing G (2020) A multi-scale analysis of 27,000 urban street networks: Every US city, town, ur-
banized area, and Zillow neighborhood. Environment and Planning B: Urban Analytics and City
Science 47(4): 590–608. DOI:10.1177/2399808318784595. URL http://journals.sagepub.

com/doi/10.1177/2399808318784595.

Boeing G (2021) Street Network Models and Indicators for Every Urban Area in the World. Geo-
graphical Analysis : gean.12281DOI:10.1111/gean.12281. URL https://onlinelibrary.wiley.

com/doi/10.1111/gean.12281.

Brenner AK, Haas W, Rudloff C, Lorenz F, Wieser G, Haberl H, Wiedenhofer D and Pichler
M (2024) How experiments with superblocks in Vienna shape climate and health outcomes
and interact with the urban planning regime. Journal of Transport Geography 116: 103862.
DOI:https://doi.org/10.1016/j.jtrangeo.2024.103862. URL https://www.sciencedirect.com/

science/article/pii/S0966692324000711.

Ewing R and Cervero R (2010) Travel and the Built Environment. Journal of the American Planning
Association 76(3): 265–294. DOI:10.1080/01944361003766766.

Florczyk AJ, Corbane C, Ehrlich D, Freire S, Kemper T, Maffenini L, Melchiorri M, Pesaresi
M, Politis P, Schiavina M, Sabo F and Zanchetta L (2019) GHSL Data Package 2019. DOI:
10.2760/290498. URL https://ghsl.jrc.ec.europa.eu.

GADM (2022) Database of global administrative areas, v4.1. URL http://gadm.org.

Hajrasouliha A and Yin L (2015) The impact of street network connectivity on pedestrian volume.
Urban Studies 52(13): 2483–2497.

Marshall W and Garrick N (2010) Effect of Street Network Design on Walking and Biking. Trans-
portation Research Record: Journal of the Transportation Research Board 2198: 103–115. DOI:
10.3141/2198-12. URL http://trrjournalonline.trb.org/doi/10.3141/2198-12.

ORNL (2011) LandScan High Resolution Global Population Data Set. URL http://web.ornl.

gov/sci/landscan/.

14

https://doi.org/10.1088/1748-9326/aa59ba
https://doi.org/10.1371/journal.pone.0223078
https://doi.org/10.1371/journal.pone.0223078
https://www.pnas.org/content/early/2020/01/13/1905232116
https://www.pnas.org/content/early/2020/01/13/1905232116
http://www.sciencedirect.com/science/article/pii/S0198971516303970
http://www.sciencedirect.com/science/article/pii/S0198971516303970
http://journals.sagepub.com/doi/10.1177/2399808318784595
http://journals.sagepub.com/doi/10.1177/2399808318784595
https://onlinelibrary.wiley.com/doi/10.1111/gean.12281
https://onlinelibrary.wiley.com/doi/10.1111/gean.12281
https://www.sciencedirect.com/science/article/pii/S0966692324000711
https://www.sciencedirect.com/science/article/pii/S0966692324000711
https://ghsl.jrc.ec.europa.eu
http://gadm.org
http://trrjournalonline.trb.org/doi/10.3141/2198-12
http://web.ornl.gov/sci/landscan/
http://web.ornl.gov/sci/landscan/


Pesaresi M (2023) GHS-BUILT-S R2023A - GHS built-up surface grid, derived
from Sentinel2 composite and Landsat, multitemporal (1975-2030). DOI:10.2905/
9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA. URL http://data.europa.eu/89h/

9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea.

Rezaei N and Millard-Ball A (2023) Urban form and its impacts on air pollution and access to
green space: A global analysis of 462 cities. PLOS ONE 18(1): e0278265. DOI:10.1371/journal.
pone.0278265. URL https://dx.plos.org/10.1371/journal.pone.0278265.

Salazar Miranda A (2021) The micro persistence of layouts and design: Quasi-experimental evidence
from the united states housing corporation. Regional Science and Urban Economics : 103755DOI:
https://doi.org/10.1016/j.regsciurbeco.2021.103755. URL https://www.sciencedirect.com/

science/article/pii/S0166046221001150.

Turner H, Lahoorpoor B and Levinson DM (2023) Creating a dataset of historic roads in sydney
from scanned maps. Scientific Data 10(1): 683.

United Nations (2019) World Urbanization Prospects: The 2018 Revision. Technical report, De-
partment of Economic and Social Affairs, Population Division. URL https://population.un.

org/wup/Publications/.

Vazquez F, Millard-Ball A and Barrington-Leigh C (2023) Urban development & street-network
sprawl in Tokyo. Journal of Urbanism: International Research on Placemaking and Urban Sus-
tainability : 1–20DOI:10.1080/17549175.2023.2262698. URL https://www.tandfonline.com/

doi/full/10.1080/17549175.2023.2262698.

15

http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea
http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea
https://dx.plos.org/10.1371/journal.pone.0278265
https://www.sciencedirect.com/science/article/pii/S0166046221001150
https://www.sciencedirect.com/science/article/pii/S0166046221001150
https://population.un.org/wup/Publications/
https://population.un.org/wup/Publications/
https://www.tandfonline.com/doi/full/10.1080/17549175.2023.2262698
https://www.tandfonline.com/doi/full/10.1080/17549175.2023.2262698


A Appendix

A.1 Algorithm to simplify the street network

Figure A1 summarizes the algorithm that we use to simplify the street network, moving from the
geometric representation provided by OSM to a functional representation that reflects the connec-
tivity of the network. See the main text for more context and justification of why simplification is
important. The key steps in Figure A1 are as follows, with select steps illustrated in Figure A2:

A.1.1 Table of edges

This is the database table produced by osm2po. Each row corresponds to one edge, and includes the
edge geometry, the ids of the start and end nodes, and a code for the OSM tag such as motorway,
primary, footway, etc. We tag footways, bicycle paths, service roads (which can be driveways,
alleys, parking aisles, and similar edges) as “bicycle/pedestrian only.”

A.1.2 Drop redundant edges

We remove edges that will not affect the connectivity calculation. This step simplifies the network
representation and speeds up subsequent analysis. Three distinct types of edges are dropped:

1. Isolated self loops. These are defined as where the start node is the same as the end node
and where no other edges start or end at that node. (Figure A2, Panel A)

2. Edges that are tagged in OpenStreetMap as sidewalks or footways. By definition, these edges
parallel or cross a road, and so do not affect connectivity.

3. Bicycle/pedestrian-only deadends. These do not affect connectivity as bicycle/pedestrian-
only edges and nodes are excluded from the aggregation, and deadends cannot improve the
connectivity of other edges. (Panel B)

4. Step 3 is repeated as deadends may be chained. (Panel B)

A.1.3 Identify clusters of nodes

A cluster is defined as a set of nodes where each node in the set is connected to at least one other
node in the set by an edge of length <= 20m. To avoid double weighting complex intersections,
our connectivity metrics are based on clusters, not on their component nodes.

A.1.4 Anneal clusters

Annealing removes degree-2 clusters. Such clusters are an artefact of the osm2po import process,
or of how the street network is represented in OSM. Degree-2 clusters are distinct from degree-2
nodes, which are handled in a subsequent step.

Our cluster annealing process has several distinct steps:

1. Drop deadends that start and end in the same cluster. (Panel C )

2. Drop isolated clusters, defined as clusters that are not connected to any other cluster.
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3. Identify the edges that comprise the shortest path through the cluster. (Panel D)

4. Drop all other edges that are within the cluster (length <= 20m, and starting and ending in
the same cluster) (Panel D)

Degree-2 nodes will remain at this point, but these are dropped in the subsequent step (shown
in Panel E and discussed in the next subsection).

A.1.5 Anneal nodes

Our process for annealing edges with degree-2 nodes is the same as in Barrington-Leigh and Millard-
Ball (2019). The following text is reproduced from that source:

For each 2-degree node, we merge the two edges that meet at that node, and delete the node
from the database. Our algorithm for accomplishing this is somewhat involved, because (1) in
many cases, degree-2 nodes are not isolated, but exist in chains; (2) such chains have the possibility
of being loops; and (3) edges are coded with a “start” and an “end” node, so that for any given
degree-2 nodes, there are four possible relationships with the adjoining edges. Because of (1) and
(2), one cannot safely process a long list of apparent degree-2 nodes with a single pass. We proceed
in the following steps:

1. Delete all isolated loops constituted of exactly two parallel (in the graph theoretic sense)
edges.

2. Select all edges with degree-2 nodes at both ends (“double-degree-2-edges”), build a network
data structure from them, and find all connected components (using networkx, a network
theory package implemented in Python). This gives all the chains consisting solely of degree-
2 nodes.

3. These chains are annealed (nodes removed; edges joined) and re-inserted into the database.
This replaces each original multi-edge double-degree-2-edge chain with a single double-degree-
2-edge.

4. Repeatedly edit the edges/nodes database tables, annealing edges which have only one degree-
2 node. This should properly reduce loops to simple self loop edges. When one edge of a pair
has two degree-2 nodes, keep its edge id and drop the other’s.

5. Drop isolated self-loops, that is, edges which have a single degree-2 node that connects the
start and end points, and are not connected to any other edges.

6. Drop parallel edges that have the same start and end node, and are not open to motor vehicles.
Most of these parallel edges consist of sidewalks and walking paths that are represented
separately from the street in the OSM database.

7. Drop island edges and nodes (where both nodes or both clusters are degree-1)

A.1.6 Drop parallel bicycle/pedestrian edges

We drop bicycle/pedestrian-only edges where there is a parallel edge (i.e., an edge with the same
start node and the same end node) that is open to cars. These dropped edges do not affect connectiv-
ity because (i) bicycle/pedestrian-only edges are ignored in the aggregation, and (ii) almost-identical
connectivity is provided by the parallel edge that is retained.
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A.1.7 Classify divided roads

We identify divided roads, where a road is represented by two or more parallel edges. We choose
one of the edges to represent the road, and ignore the others in the aggregation. Typically, this
situation arises when a road with a median is mapped in OSM as two separate edges, one for each
direction of travel. The main text provides more discussion of this issue.

A.2 Decomposition of changes

In most countries, the new algorithm changes our results only modestly, meaning that our 2019
interpretations of SNDi are qualitatively unchanged. Among large countries (Figure A3), the most
marked changes are an increase in SNDi in Japan and Brazil, which is due mostly to the reweighted
Principal Component Analysis (PCA) coefficients rather than changes in the underlying metrics,
but these countries are still ranked as highly connected (low SNDi) in comparative terms. The
addition of new data, moving from our 2019 analysis (based on an August 2018 OSM vintage) to
the October 2023 vintage has little effect in most large countries, highlighting the stability of our
composite SNDi measure over four years of additions by OpenStreetMap contributors.
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Figure A1: Summary of algorithm to simplify the road network
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Figure A2: Examples of specific steps in the simplification process
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Figure A3: Comparison of 2019 and present analysis. The 10 largest countries (by number of nodes)
are shown. The difference between the green and orange dots represents the impacts of our new
algorithm. The difference between the orange and purple dot represents the impact of updated
OSM data.
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A.3 Description of connectivity measures

Concept Core metric Aggregated measure(s)

Edges

Edge
classification
(dendricity)

dead-end

Fractions of edges; fraction of length graph-theoretic
self-loop

other bridge
part of a cycle

Sinuosity
path length Gross sinuosity, i.e. summed path length

/ summed end-to-end length
geographic

end-to-end length

Nodes

Nodal degree
dead-end

Mean degree; fraction of dead-ends and
fraction of degree<4

graph-theoreticdegree 3
degree>3

Node-node
distance
ratios
(circuity)

r ≤ 500 m

Summed path length over summed
end-to-end length for all proximate node
pairs within radius r

geographic

500 m < r ≤ 1000 m
1000 m < r ≤ 1500 m
1500 m < r ≤ 2000 m
2000 m < r ≤ 2500 m
2500 m < r ≤ 3000 m

Nodal density

Nodes within 500 m

Node-weighted mean area density
Nodes within 1000 m
Nodes within 1500 m
Nodes within 2000 m
Nodes within 2500 m

Table A1: Overview of core and aggregate connectivity measures. Our database consists of
computed values of the core metrics for each edge and node. When expressing aggregate metrics for
administrative or city regions, we use the approach in the “Aggregation measure(s)” column. For
our preferred results, we include only the edges and nodes we deem to be urban and that are open
to motor vehicles, when aggregating. In order to align our metrics with increasing street-network
sprawl, we use sparsity (inverse density) in place of density, and negative degree in place of mean
degree.
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Type Node
or
edge

Definition Considered when
calculating nodal
degree

Considered
when cal-
culating
shortest paths

Considered as ori-
gins or destina-
tions in circuity
calculations

Considered
when calcu-
lating graph
theoretic
measures

Included in ag-
gregation

Intra-
cluster

node Connected to an edge with
length ≤20m

N/A Yes One randomly
chosen node
represents each
cluster

Yes One randomly
chosen node
represents each
cluster

Intra-
cluster

edge Link nodes within the same
cluster, and are ≤40m in length

No Yes N/A Yes No

Divided
road

edge Edges that start and end in the
same cluster, and have the same
name in OSM

One randomly
chosen edge
represents each
road

Yes N/A Yes One randomly
chosen edge
represents each
road

Bicycle
and pedes-
trian

edge Classified in OSM as pedestrian,
path, track, cycleway, footway,
steps, crossing, service

Yes Yes No Yes No

Bicycle
and pedes-
trian

node Would not exist if all bicy-
cle and pedestrian edges were
deleted, i.e. would be degree-0
or degree-2 after ignoring those
edges

N/A Yes No N/A No

Core both All other edges and nodes Yes Yes Yes Yes Yes

Table A2: We designate certain nodes and edges as intra-cluster, divided road, or bicycle and pedestrian. As discussed in the main text, this
allows us to mitigate the dependence of our results on how the street network is represented in OSM, and to capture how bicycle and pedestrian
paths contribute to connectivity.
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A.4 Definition of Street Network Disconnectedness Index (SNDi)

Aggregated measure PCA1 Mean StdDev

Nodal degree (negative) .29 −2.7 .41
Fraction deadends .27 .23 .16
Log10 Circuity (0–0.5km) .24 .042 .098
Log10 Circuity (0.5–1km) .30 .18 .17
Log10 Circuity (1–1.5km) .32 .22 .17
Log10 Circuity (1.5–2km) .32 .037 .067
Log10 Circuity (2–2.5km) .31 .040 .036
Log10 Circuity (2.5–3km) .30 .22 .15
Fraction bridges (length) .20 .22 .14
Fraction non-cycle (length) .28 .21 .13
Fraction non-cycle (N edges) .32 .20 .12
Fraction bridges (N edges) .25 .19 .11
Log10 Curviness .16 .18 .10
Variance explained 48%
Eigenvalue 6.3

Table A3: Definition of SNDi. The first column shows the first principal component loadings. The
second and third columns provide the global means and standard deviations. To calculate SNDi
for a region, calculate the given aggregated measures from the nodes and edges in the region. Then
subtract the Mean value, divide by the StdDev, multiply by the loadings, and take the sum. Finally,
we add an arbitrary value of 4.64 to the result to get the published SNDi; this assures that observed
values tend to be positive.
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